اسائنمنٹ

سید ذیشان

محفلین
میں ln x کے لئے کرتا ہوں۔ بعد میں x میں کوئی بھی ویلیو ڈالی جا سکتی ہے۔
کوڈ:
d/dx ln (x)
 
=lim ( ( ln(x+h) - ln(x)) / h))
when h--> 0
 
= lim ln ((x+h)/x) /h
when h-->0
 
= lim (1+h/x) / h
h->0
 
Using Taylor's series expantion ln (1+y)
=y-y^2/2+y^3/3-y^4/4+.........
 
here, we have h/x instead of y
 
lim h->0 (y/2-y^2/2 +y^3/3 -......)/h
 
= 1/x - h/2 +h^2/2- higher powers of h
 
as h goes to 0, except for the first term, all of the other terms go to Zero
limit is 1/x
 
It's kind of ironic that Taylor series also uses the derivatives of ln (x)
but you will get full marks for this answer anyway :)
 

محمد بلال اعظم

لائبریرین
میں ln x کے لئے کرتا ہوں۔ بعد میں x میں کوئی بھی ویلیو ڈالی جا سکتی ہے۔
کوڈ:
d/dx ln (x)
 
=lim ( ( ln(x+h) - ln(x)) / h))
when h--> 0
 
= lim ln ((x+h)/x) /h
when h-->0
 
= lim (1+h/x) / h
h->0
 
Using Taylor's series expantion ln (1+y)
=y-y^2/2+y^3/3-y^4/4+.........
 
here, we have h/x instead of y
 
lim h->0 (y/2-y^2/2 +y^3/3 -......)/h
 
= 1/x - h/2 +h^2/2- higher powers of h
 
as h goes to 0, except for the first term, all of the other terms go to Zero
limit is 1/x
 
It's kind of ironic that Taylor series also uses the derivatives of ln (x)
but you will get full marks for this answer anyway :)


زبردست ذیشان بھائی۔
 

محمد بلال اعظم

لائبریرین
میں ln x کے لئے کرتا ہوں۔ بعد میں x میں کوئی بھی ویلیو ڈالی جا سکتی ہے۔
کوڈ:
d/dx ln (x)
 
=lim ( ( ln(x+h) - ln(x)) / h))
when h--> 0
 
= lim ln ((x+h)/x) /h
when h-->0
 
= lim (1+h/x) / h
h->0
 
Using Taylor's series expantion ln (1+y)
=y-y^2/2+y^3/3-y^4/4+.........
 
here, we have h/x instead of y
 
lim h->0 (y/2-y^2/2 +y^3/3 -......)/h
 
= 1/x - h/2 +h^2/2- higher powers of h
 
as h goes to 0, except for the first term, all of the other terms go to Zero
limit is 1/x
 
It's kind of ironic that Taylor series also uses the derivatives of ln (x)
but you will get full marks for this answer anyway :)

کیا ہم اس سوال کو binomial series سے بھی کر سکتے ہیں؟
 
Top